skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Ekuma, Chinedu"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available May 1, 2026
  2. A new generation of quantum material derived from intercalating zerovalent atoms such as Cu into the intrinsic van der Waals gap at the interface of atomically thin two-dimensional GeSe/SnS heterostructure is designed, and their optoelectronic features are explored for next-generation photovoltaic applications. Advanced ab initio modeling reveals that many-body effects induce intermediate band (IB) states, with subband gaps (~0.78 and 1.26 electron volts) ideal for next-generation solar devices, which promise efficiency greater than the Shockley-Queisser limit of ~32%. The charge carriers across the heterojunction are both energetically and spontaneously spatially confined, reducing nonradiative recombination and boosting quantum efficiency. Using this IB material in a solar cell prototype enhances absorption and carrier generation in the near-infrared to visible light range. Tuning the active layer’s thickness increases optical activity at wavelengths greater than 600 nm, achieving ~190% external quantum efficiency over a broad solar wavelength range, underscoring its potential in advanced photovoltaic technology. 
    more » « less
  3. We report the mechanical properties of cubic boron nitride (c-BN) and diamond under the combined impact of dynamical pressure and temperature, calculated using ab initio molecular dynamics. Our study revealed a pronounced sensitivity of the mechanical properties of c-BN to applied pressure. Notably, c-BN undergoes a brittle-to-ductile transition at ∼220 GPa, consistent across various dynamical temperatures, while diamond exhibits no such transition. Furthermore, the Vickers hardness profile for c-BN closely mirrors that of diamond across a spectrum of temperature–pressure conditions, highlighting c-BN's significant mechanical robustness. These results underscore the superior resilience and adaptability of c-BN compared to diamond, suggesting its potential as an ideal candidate for applications in extreme environments. 
    more » « less
  4. Razeghi, Manijeh; Jarrahi, Mona (Ed.)
    GeS and GeSe are 2D semiconductors with band gaps in the near infrared and predicted high carrier mobility. We find that excitation with 800 nm pulses results in long-lived free photocarriers, persisting for hundreds of picoseconds, in GeS and GeSe noribbons. We also demonstrate that zerovalent Cu intercalation is an effective tool for tuning the photoconductive response. Intercalation of ~ 3 atomic % of zerovalent Cu reduces the carrier lifetime in GeSe and GeS. In GeS, it also shortens the photoconductivity rise and improves carrier mobility. 
    more » « less
  5. Germanium sulfide (GeS) and germanium selenide (GeSe) are layered 2D van der Waals materials that belong to a family of group-IV monochalcogenides. These semiconductors have high carrier mobilities and moderate band gaps in the near infrared. Additionally, we have demonstrated that above gap photoexcitation results in ultrafast surface photocurrents and emission of THz pulses due to a spontaneous ferroelectric polarization that breaks inversion symmetry in the monolayer. Beyond the sub-picosecond time scales of shift currents, photoexcited carriers in both materials result in long-lived transient conductivity. We find that 800 nm excitation results in longer lived free photocarriers, persisting for hundreds of picoseconds to several nanoseconds, compared to tens to hundreds of picoseconds lifetimes for 400 nm excitation. Here, we report on tailoring the free photoexcited carrier lifetimes by intercalation of zero-valent Cu into the van der Waals gaps of GeS and GeSe. Density functional theory calculations predict that Cu atoms introduce mid-gap states. We demonstrate that intercalating only ∼3 atomic % of zero-valent Cu reduces the carrier lifetime by as much as two-to-four-fold, raising the prospects of these materials being used for high-speed optoelectronics. 
    more » « less